# Sequential Blockage as a Theoretical Basis for Drug Synergism 

Martin L. Black<br>The Research Laboratories, Parke, Davis and Co., Ann Arbor, Michigan

Rereived September 1, 1962


#### Abstract

Kinetics analysis of a linear model enzyme system shows that, in theory, the combined effect of two inhibitors acting by sequential blockage is necessarily synergistic. The rate equations for the system describe a theoretical dose-effect surface for the drug pair which results in a formal definition of synergism that correlates well with experimental observation over the concentration range for which the effect is demonstrable. This definition provides a rationale for the isobole technique for demonstrating synergism experimentally and a means for defining and calculating the "amount" of synergism shown by two drugs.


The term synergism ${ }^{1}$ has been applied by pharmacologists ${ }^{2}$ and chemotherapists ${ }^{3-6}$ to instances in which two or more inhibitors of a biological response are more effective when acting together than would be expected ${ }^{7}$ from additivity of their individual effects. ${ }^{8}$

Synergism is often encountered ${ }^{9}$ and is always of interest for the possibility that host toxicity may be only additive, ${ }^{10}$ or that the emergence of drug resistance may be delayed by the combined use of two or more inhibitors with different modes of action. ${ }^{11}$ The effect is unmistakable ${ }^{12}$ when drugs A and B, which produce a certain sub-maximal effect in concentrations $a$ and $b$ alone, produce the same effect when combined in con-
(1) Observations of synergism and use of the isobole method for de-
scribing them are at least 90 years old. T. R. Fraser, Brit. Med. J., 2, 457,
485 ( 1872 ), did not use the term but observed synergism, as well as antagon-
ism, between atropine and physostigmine, depending on relative doses.
Since Fraser, the term has had a controversial career, as emphasized by a
recent exchange of Letters to the Editor, Various Authors. The New Scien-
tist, 14, 481, 600, 662 (1962). The term even has a metaphysical connota-
tion: ibid., 15, 45 (1962).
(2) G, Chen, Arch. Intern. Pharmacodyn., 111, 322 (1957),
(3) G. A. H. Buttle. Proc. Roy. Soc. Med., 49, 873 (1956).
(4) E. Jawetz and J. B. Gunnison, Pharmacol. Revs., E, 175 (1953).
(5) E. Jawetz, J. B. Gunnison and V. R. Coleman, J. Gen. Microbiol., 10.
191 (1954).
(6) Anon.. Chem. Eng. News, 32, 4473 (1954).
(7) One person will "expect" more than another, so this "definition" is
operationally worthless. A. J. Zwart Voorspuij and C. A, G. Nass, Arch.
Intern. Pharmacodyn., 109, 211 (1957), and S. Loewe, Arzneimittel-Forsch.,
3. 285 (1953), have in fact shown how it can lead to the absurd
conclusion that a drug can be synergistic with itself. As Loewe contends,
the decisive test for synergism lies in treatment of the data by the boloform
method. This method has been applied to double inhibition by G. H. Hitch-
ings, Am. J. Clin. Nutrition, 3, 321 (1955), by S. B. Kendall, Proc. Roy. Soc.
Med., 49, 874 (1956), and by many others. Chen, ref. 2, and A. J. Zwart
Voorspuij and L. H. Bokma, Ann. inst. Pasteur. 95. 404 (1958). have used
4 -dimensional boloforms to describe the joint effects of 3 inhibitors.
(8) Loewe (see ref. 7) emphasizes that a definition of synergism based on
non-additivity $v s$. additivity of effects is meaningless since effects are never
with certainty additive. He discusses in detail the question of "what is
properly additive to what." See also ref. 21.
(9) The literature on synergism has been reviewed by $H$. Veldstra.
Pharmacol. Revs., 8, 339 (1956). A well documented case results from the
action of sulfadiazine ( $l_{1}$ ) and pyrimethamine ( $I_{2}$ ) on a variety of organisms.
both in vitro and in vivo, presumably by blockage of the essential sequence

$$
p \text {-Aminobenzoic acid } \xrightarrow{\mathrm{I}_{1}} \text { Folic acid } \xrightarrow{\mathrm{I}_{2}} \text { Folinic acid }
$$

See L. G. Goodwin. Proc. Roy. Scc. Med., 49، 871 (1956): S. B. Kendall, see ref. 7: L. G. Goodwin and 1. M. Rollo in "The Biochemistry and Physiology of Protozoa." S. H. Hutner and A. Lwoff. eds., Academic Press. New York, N. Y., 1955. Vol. 2, pl. 245-246; L. P. Joyner and S. B. Kendall, Nature, 176, 975 (1955): G. H, Hitchings. see ref. 7.
(10) As was shown by J. Greenberg, B. L. Boyd, and E. S. Josephson, J. Pharmacol. Exptl. Therap. 94, 60 (1948), for experimental treatment of Plasmodium gallinaceum infections with sulfadiazine-chloroguanide combinations.
(11) D. A. Mitchison. Brit. Med. Bull. . 18. 77 (1962).
(12) See, for example, M. W. Fisher and L. Doub, Biochem. Pharmacol., 3. 10 (1959). M. W. Fisher. Antibiot. Chemotherapy. 7. 315 (1957), also has shown that a concerted inhibitory effect, consisting of antimetabolic and immnnogenic components, can achieve the same net result. B. A, Waisbren, icid.. 7. 322 (1957), has reported the clinical effectiveness of this technique.
centrations $x a$ and $y b$, with $(x+y) \lll 1$. Results of this type seem to be in some way multiplicative, instead of additive, functions of inhibitor concentrations, but they apparently have never been accounted for in theoretical terms. ${ }^{13}$
The plausibility of sequential blockage as a mechanism for synergism is widely accepted, ${ }^{13,44}$ but on purely intuitive grounds and not without dissent. ${ }^{14}$ It is the purpose of the present work to show that synergism in this sense is not only possible but is, indeed, a necessary consequence of a sequentially blocked mechanism. This will be done by deriving from the kinetics of a model reaction an expression for the net effect of two inhibitors that act at different points in a linear sequence of enzymatic reactions. The resulting expression leads to a formal definition of synergism that relates individual dose-effect curves to a dose-effect, or boloform, ${ }^{8}$ surface for joint inhibition. This expression contains a small number of constants, each of which is a defined reaction parameter. Synergism, as defined by this equation, is a necessary result of sequential blockage in the sense that the net effect of the inhibitors is a multiplicative function of their concentrations for all possible values of the constants and variables that the defining equation contains.
The model to be adopted is based, in part, upon these assumptions: (1) the intensity ( $R_{\mathrm{t}}$ ) of the biological response in question, whether inhibited or not, is limited at a given time by (and only by) the instantaneous rate, $\mathrm{d} s_{3} / \mathrm{d} t$, at which some metabolite, $\mathrm{S}_{3}$, is being produced at the same time from precursors, $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$, by the mechanism, $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{3}$; (2) the effect ( $E_{\mathrm{t}}$ ) of inhibitors of the response is to depress the rate of formation of $S_{3}$; (3) each inhibitor acts by competing with a different substrate for active sites on the enzyme, $\mathrm{E}_{1}$ or $\mathrm{E}_{2}$, with which the substrate must combine to react.
These assumptions will be introduced later in more explicit mathematical form; they are more general than those upon which the Michaelis-Menten theory is based, so in this sense the present results are more general than a Michaelis-Menten treatment of this specific
(13) A. Albert, Proc. Roy. Soc. Med., 49. 881 (1956), cominents briefly on the "arithmetic" of synergism but does not show how inhibitor concentrations are involved.
(14) See, for example, R. Knox, ibid., 49, 879 (1956).
(15) M. Dixon and E. C. Webb. "Enzymes." Acadeınic Press. Inc.. New York, N. Y.. 1958, Chapt. XII, discriss substrate-linked multi-enzyme systems in detail.
(16) The interdependence of bacterial growth rates and enzyme-substrate kinetics is treated exhaustively by C. N. Hinshelwood. "The Chemical Kinetics of the Bacterial Cell," Oxford University Press, London, 1946. See also M. Harris and G. A. Morrison, Nature, 191, 1276 (1961).
problem would allow. The latter theory ${ }^{17,18}$ has dealt with the effect of a single inhibitor upon a single enzymatic step but has not been cleveloped in a direction that fits the present purpose. The non-biological literature ${ }^{19}$ on consecutive reactions also fails to show how inhibitor concentrations combine to affect net reaction rates.
'The reaction model assumed here is, of course, an over-simplification ${ }^{20}$; its usefulness is nevertheless shown by the identity of the resulting rate equations for single inhibition with certain empirical expressions that have been applied successfully to a variety of singly-inhibited biological responses. The equations to be developed therefore suggest a deductive basis for these empirical expressions and permit for the first time a presumptive identification of the arbitrary constants that they contain.

The equation for joint inhibition defines a theoretical dosc-effect, or boloform, surface; the validity of this equation as a definition of synergism is supported by the similarity of constant-effect profiles of this surface to published isoboless.41.44 whose shape is commonly accepted as distinctive of synergism. These and other points of agreement with published work will be discussed later in detail; they suggest that, despite the highly idealized nature of the model, sequential blockage is nccessarily synergistic over a concentration range that is experimentally meaningful; they also imply that addlitive ${ }^{21}$ and antagonistic ${ }^{22}$ effects of jointly administored drugs should depend upon mechanisms that differ in some fundamental way from one that results in synergism.

The present results indicate that synergism is as much a feature of the enzyme system as it is a feature of the inhibitors; they do not deny, however, that types of synergism entirely unrelated to sequential blockage may also exist. ${ }^{14.45}$

## Derivation of Rate Equations

Symbols and Abbreviations.-The conventions and assumptions of chemical, bacterial and enzyme kinetics to, be used involve the following terminology.

[^0]$s_{1}{ }^{\prime \prime} . s_{2}{ }^{*}, s_{3}{ }^{\prime \prime}, i_{1}{ }^{\prime \prime}, i_{2}{ }^{\prime \prime}$ concentrations of frec substratus, $s_{1}, s_{0}$,
 are symuments with concentrations of drugs alded at the begiming of an experiment.
 :mul In at time, t.
"o-instantanens concentrations af free enzymatie sites. $\mathrm{L}_{1}$ and $\mathrm{E}_{\mathrm{e} \text { at }}$ atince, $t$
t- time, duting from some arbitrary beginming, $t=0$.
$k_{3} k_{3}, k_{x}, k_{1}$ spesific rate constants for reactions in the models described belnw.
$w=k_{x} / k_{y}$
$l^{\prime}$--response of the system as limited by the instantancous rate of :appearance of $S_{3}$ at time, $t$, with initial inhibitor concentrations, $i_{1}^{\prime \prime}$ and $i_{2}$ ", either alone or combined.
$E_{1}-$ drug effect at time, $t$.
i...innctional motation. as in $E_{\mathrm{t}}=f\left(i_{1}, i^{4}\right)$. Ise in different manctations does nut imply that $f$ is of the same form in :ll rases.
$F$ - the function "erresponding to $f$ after integration.
("- integration constant; non-committal in same sense as $]$.
In-lugarithm to base e.

+     - inase uf the natural legarithm system.
$n_{1}$ - instuntancmus concentration of bacterial cells in a logurithmically growing sulture at time. $l$.
$k^{\prime}$-bucteriad grnyth rate constant during the lugarithmic growth phase.
$I^{\prime}$--proportionality ronstant relating instantanemis bacterial grow th rate to instantaneous rate of appearance of $S$.
. 1-optical :absorbancy of a bacterial culture containing :s (am(entration of cells, $n_{6}$, at time. $t$.
4 -propertionality monstant relating $A_{1}$ : ind $n$, sucth that $A,=$ 4":
 turs relative tu a specified $E_{1}$ end-puiat.


## Kinetics Definitions

Fia; (1abse Casm
(ii) $-\mathrm{d}_{1} / \mathrm{d} t=h_{1, \cdots}$
(i) $-\left(i_{1} / \mathrm{d} t=b_{1} i_{1}\right.$
(i.) $-\mathrm{d}_{2} / \mathrm{d}_{1}=i_{2} 4_{1}=\mathrm{d} v_{3} / \mathrm{d} t$
(d) $-\mathrm{d} i_{2} / \mathrm{d} t=\mathrm{F}_{2} \mathrm{i}_{\mathrm{i}}$
 statement of Assmmption 1 (see Introduction).
(f) $E_{1} \propto 1 / R_{1}$, whence $\mathrm{d} E_{1} / E_{,}=-\mathrm{d} R_{1} / R_{i}$. This is a
mathematiowl re-statement of assumption 2 (see introduction).
(g) $i_{1}=i_{1}{ }^{-k,}$ (hy integration of definition b)
(h) $i_{2}=i_{s} e^{-k_{v} b}$ (hy integration of definition d )
(i) If the system is closed, then, by material ba'ance
$s_{i}+s_{s}+s_{s}=s_{1}{ }^{0}+s_{2} 0^{0}+s_{3}{ }^{0}$
(j) Far the specific case of bacterial growth
${ }^{1} h_{1} / \mathrm{d} t=k^{\prime} m_{:}=P^{\prime}\left(h_{0}^{\prime}\right)=k^{\prime} 1_{1} / 4$ during the log:mithmin growth phase.

$$
\begin{aligned}
& \text { Seconi ()rder (ane } \\
& \text { (k) }-\mathrm{d} \mathrm{~s}_{2} / \mathrm{d} t=\mathrm{l}_{\mathrm{c}} \mathrm{e} \mathrm{se}_{2}=\mathrm{ds} \mathrm{~s}_{3} / \mathrm{d} t=h_{\text {; }} \\
& \text { (1) }-\mathrm{d}_{1} / \mathrm{l} t=k_{0_{1}} c_{1} s_{1} \\
& \text { (min) }-d i_{1} / d t=k_{1} t_{1} i_{1} \\
& \text { ( } \mathrm{n} \text { ) }-\mathrm{H}_{2} / \mathrm{l} t=k_{5} \mathrm{~m} \text { i: }
\end{aligned}
$$

## Mathematical Definitions

The usual notation of differential and integral c:alculns wilt he used, including the two theorems
(A) If $x=f(y, z)$, then

$$
11 \cdot r=(\partial x / \partial y)_{z} \mathrm{~d} y+(\partial x / \partial z)_{y} \mathrm{~d} z
$$

even when $y$ and $z$ are interdependent. ${ }^{3 n}$
(B) If $u=f(x), x=f(y)$, and $y=f(z)$ then $n^{2.1}$

$$
\frac{\mathrm{d} w}{1 \mathrm{I}_{z}}=\frac{\mathrm{d} w \mathrm{~d} x \mathrm{~d} y}{\mathrm{~d} x} \mathrm{~d} y \mathrm{~d} z
$$

## Summary of Procedure.-Expressinns for the functions

$$
\mathrm{d} k_{\mathrm{t}}=f_{\mathrm{t}}\left(\mathrm{~d} i_{1}{ }^{\prime \prime}\right)
$$

[^1]$$
\mathrm{d} R_{\mathrm{t}}=f_{2}\left(\mathrm{~d} i_{2}{ }^{0}\right)
$$
will first be derived. These will be combined by theorem $A$ to give an expression for
$$
\mathrm{d} R_{\mathrm{t}}=f_{1,2}\left(\mathrm{~d} i_{1}{ }^{0}, \mathrm{~d} i_{2}{ }^{0}\right)
$$

Because of the logarithmic nature of $f_{1}$ and $f_{2}$ and the relationship between $R_{\mathrm{t}}$ and $E_{\mathrm{t}}$, the differential equation that results will be shown to have a solution of the form

$$
E_{\mathrm{t}}=F_{1,2}\left(i_{1}{ }^{0} \times i_{2}{ }^{0}\right)
$$

$E_{\mathrm{t}}$ is, thus, a function of the product of $i_{1}{ }^{0}$ and $i_{2}{ }^{0}$, proving that synergism is a necessary property of the model assumed. $E_{t}$, as a function of $i_{1}{ }^{0}$ and $i_{2}{ }^{0}$, is the equation for a boloform surface. ${ }^{8}$ An isobole is a constant-effect profile of a boloform surface ${ }^{7}$; thus $\mathrm{d} E_{\mathrm{t}}=0$, leaving an expression for $i_{1}{ }^{0}=F\left(i_{2}{ }^{0}\right)$ as the equation for a theoretical isobole. The slope and direction-of-curvature of this isobole denote synergism for all possible values of the constants and variables.

Discussion of the Reaction Model.-Proof of the case for synergism requires an expression relating $R_{\mathrm{t}}$ to $i_{1}{ }^{0}$ and $i_{2}{ }^{0}$. The rate expression can contain $i_{1}{ }^{0}$ and $i_{2}{ }^{0}$ as variables only if $i_{1} \sim e_{1}$ and $i_{2} \sim e_{2}$ or if $e_{1} \ggg i_{1}$ and $e_{2} \ggg i_{2}$. Since competition between inhibitors and substrates for the enzyme surfaces is required for inhibition, $s_{1} \sim i_{1}$ and $s_{2} \sim i_{2}$ are also realistic conditions. The only models, therefore, that will permit a proof of the desired type are:
(1) 1st-order in $s_{1}, s_{2}, i_{1}, i_{2}$ and zero-order in $e_{1}$ and $e_{2} ;$ i.e., $e_{1} \ggg s_{1}$ and $i_{1} ; e_{2} \ggg s_{2}$ and $i_{2}$. A proof based on this model will be given in detail.
(2) 2nd-order in which $\varepsilon_{1} \sim i_{1} \sim e_{1}$ and $s_{2} \sim i_{2} \sim$ $e_{2}$. This procedure gives a more general but less useful result than the above. The differential equations that result cannot be integrated, but they reduce to the 1 storder set when 1 st-order conditions are imposed. The 2nd-order case may be safely ignored for the present purpose, for reasons to be given later.

The arguments to follow do not require the assumption of an intimately detailed mechanism, but the 1storder case may be depicted in highly schematic form as shown:
(1) Inhibition by $\mathrm{I}_{1}$ alone

$$
\left[\begin{array}{l}
\mathrm{I}_{1} \xrightarrow[\left(\mathrm{E}_{1}\right)]{k_{x}}\left(\mathrm{E}_{1}\right) \mathrm{I}_{1} \\
\mathrm{~S}_{1} \xrightarrow[\left(\mathrm{E}_{1}\right)]{k_{1}} \mathrm{~S}_{2}
\end{array}\right] \xrightarrow[\left(\mathrm{E}_{2}\right)]{k_{2}} \mathrm{~S}_{3}
$$

(2) Inhibition by $\mathrm{I}_{2}$ alone

$$
\mathrm{S}_{1} \xrightarrow[\left(\mathrm{E}_{1}\right)]{k_{1}}\left[\begin{array}{l}
\mathrm{S}_{2} \xrightarrow[\left(\mathrm{E}_{2}\right)]{k_{2}} \mathrm{~S}_{3} \\
\mathrm{I}_{2} \xrightarrow[\left(\mathrm{E}_{2}\right)]{k_{y}}\left(\mathrm{E}_{2}\right) \mathrm{I}_{2}
\end{array}\right]
$$

(3) Inhibition by $I_{1}$ and $I_{2}$ simultaneously

$$
\left[\begin{array}{l}
\mathrm{I}_{1} \xrightarrow[\left(\mathrm{E}_{1}\right)]{k_{z}}\left(\mathrm{E}_{1}\right) \mathrm{I}_{1} \\
\mathrm{~S}_{1} \xrightarrow[\left(\mathbf{E}_{1}\right)]{k_{1}}\left[\begin{array}{l}
\mathrm{S}_{2}
\end{array}\right] \xrightarrow[\left(\mathbf{E}_{3}\right)]{k_{3}} \mathrm{~S}_{3} \\
\mathrm{I}_{2} \xrightarrow[\left(\mathbf{E}_{2}\right)]{k_{2}}\left(\mathbf{E}_{2}\right) \mathrm{I}_{2}
\end{array}\right]
$$

The brackets enclose the species that react competitively. 'The symbols $\left(\mathrm{E}_{1}\right)$ and ( $\mathrm{E}_{2}$ ) have no mathematical meaning but are included as reminders that enzyme-1 and enzyme-2 are involved in the usual cat-
alytic sense. In the 2nd-order model the concentrations $e_{1}$ and $e_{2}$ of these enzymes must, however, be treated as variables.

All reactions are assumed to be irreversible because of the mass-action effect of $e \ggg(i \sim s)$. Steadystate conditions are not deliberately imposed, but the net result, as will be shown later, is equivalent to having done so.

The condition for competitive inhibition (Assumption 3, see Introduction) will appear in the following development as negative signs for operators of the type $-\mathrm{d} s / \mathrm{d} i$, and for the functions that they represent. This condition is justified by the following argument. Competition prevails as long as both S and I are present, so any change in $s$ occurs in the face of competition from I, and conversely. Consider two hypothetical experiments that differ only in the infinitesimal extent to which competition has occurred after a given time interval; the relationship existing between the variables at the stated time is,

$$
\mathrm{d} s=k \mathrm{~d}\left(i^{0}-i\right)
$$

i.e., the increased extent, $\mathrm{d} s$, to which S has not reacted with E is due to more efficient competition by I, as measured by the increased extent, $\mathrm{d}\left(i^{0}-i\right)$, to which I has reacted with E within the same time interval. This relationship carries a linear proportionality constant, $k$, since competition occurs on a one-for-one basis. Performing the indicated differentiation gives

$$
-\mathrm{d} s / \mathrm{d} i=k
$$

The precise form of the function corresponding to the operator $-\mathrm{d} s / \mathrm{d} i$ will appear later, but the above argument shows that it can be interpreted as a condition for competition and that, as such, it is always negative. The negative sign will hereafter be affixed to $d s / d i$ as a reminder that the function that it represents must likewise be negative.

This argument acknowledges only those changes in $s$ and $i$ that are due to competition proper; other contributions to the net changes in these quantities will be incorporated, as needed, in the form of the appropriate operators. In this sense, $-\mathrm{d} s / \mathrm{d} i$ is actually a partial differential coefficient in which all influences upon $s$ and $i$ that do not result from competition are considered constant. As will be shown later, this mathematical interpretation of a metabolic block leads to variants of Huxley's ${ }^{25}$ well-known allometric equation, $\mathrm{d} y / \mathrm{d} x=$ $k y / x$, which has been applied to competitive biological interactions of widely variable types. ${ }^{26}$

## Derivation for First-order Model with Inhibition by

 $\mathbf{I}_{1}$ Alone.-From definition (e)$$
R_{\mathrm{t}}=f\left(s_{2}\right)
$$

From definition (i), with $s_{1}{ }^{0}, s_{2}{ }^{0}, s_{3}{ }^{0}$ and $s_{3}$ constant

$$
\begin{equation*}
s_{2}=f\left(s_{1}\right) \tag{2}
\end{equation*}
$$

From the condition for competition between $S_{1}$ and $I_{1}$ for ${ }^{-} \mathrm{E}_{1}$

$$
\text { (3) } \quad s_{1}=f\left(i_{1}\right)
$$

From definition (g), when $t$ is constant
$\frac{\text { (4) }}{} i_{1}=f\left(i_{1}{ }^{0}\right)$
(25) J. S. Huxley, "Problents of Relative Growth," Methuen and Co..
(26) H. H. G. Bray and K. White, ref. 17. pl. 332-333.

So, from theorem B

$$
\begin{equation*}
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i \cdot 0}=\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}} \times \frac{\mathrm{d} s_{2}}{\mathrm{~d} s}\left(-\frac{\mathrm{d} s_{1}}{\mathrm{~d} i_{1}}\right) \frac{\mathrm{d} i_{1}}{\mathrm{i} i_{1}{ }^{0}} \tag{5}
\end{equation*}
$$

in which the negative term is the condition for competition between $I_{1}$ and $\mathrm{S}_{1}$ for $\mathrm{E}_{1}$.

The operations indicated in eq. (5) are performed on definitions (a), (b), (c), (e) and (g). Differentiation of definition (e) gives

$$
\begin{equation*}
\mathrm{d} R_{\mathrm{t}} / \mathrm{d} s_{2}=k_{2} \tag{6}
\end{equation*}
$$

Definition (c) divided by definition (a) gives

$$
\begin{equation*}
\frac{\mathrm{d} s_{\underline{y}}}{\mathrm{~d} s_{1}}=\frac{k_{2} s_{y}}{k_{i_{1}} s_{1}} \tag{7}
\end{equation*}
$$

Definition (a) divided by definition (b) gives

$$
\begin{equation*}
-\frac{\mathrm{d} s_{1}}{\mathrm{~d} i_{1}}=-\frac{k_{1} s_{1}}{k_{\mathrm{k}} i_{1}} \tag{8}
\end{equation*}
$$

Differentiation of definition (g) with $t$ constant gives

$$
\begin{equation*}
\mathrm{d} i_{1} / \mathrm{d} i_{1}{ }^{0}=e^{-k_{x} t} \tag{9}
\end{equation*}
$$

Combining eq. ( $6-9$ ) in the manner indicated by cq. (5) grives

$$
\begin{equation*}
\frac{\mathrm{d} F_{t}}{\mathrm{~d} i_{1}{ }^{0}}=k_{2}\left(\frac{k_{2} g_{2}}{k_{1} s_{1}}\right)\left(-\frac{k_{1} s_{1}}{k_{x} i_{1}}\right) e^{-k_{x} t} \tag{10}
\end{equation*}
$$

Substituting definition (g) for $i_{1}$ in eq. (10) and cancelling identical terms gives

$$
\begin{equation*}
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i_{1}{ }^{0}}=-\frac{k_{2}\left(k_{2} s_{2}\right)}{k_{\mathrm{x}} i_{1}{ }^{0}} \tag{11}
\end{equation*}
$$

Disappearance of the $t$ term still leaves time as a hidden variable in all subsequent equations; thus $R_{\mathrm{t}}$ will always refer to response, and $E_{t}$ to effect, after a constant time interval dating from introduction of the inhibitor(s) to the system.

By definition (e), $k_{2} s_{2}=R_{t}$, so eq. (11) becomes, after rearranging

$$
\begin{equation*}
\mathrm{d} R_{\mathrm{t}}=-\frac{k_{2}}{k_{\mathrm{x}}} \times \frac{R_{\mathrm{t}}}{i_{1}} \mathrm{~d} i_{1}{ }^{\mathrm{n}} \tag{12}
\end{equation*}
$$

Integration of eq. (12) gives
(13)

$$
-\ln R_{\mathrm{t}}=\frac{k_{2}}{k_{\mathrm{x}}} \ln i_{1}{ }^{n}+\ln C
$$

or, by definition (f)

$$
\begin{equation*}
\ln E_{\mathrm{t}}=\frac{k_{3,}}{k_{\mathrm{x}}} \ln i_{1}^{n}+\ln C \tag{14}
\end{equation*}
$$

Derivation for First-order Model with Inhibition by $I_{2}$ Alone.-The derivation follows from definitions (c), (d), (e), and (h), theorem B, and the condition for competition by a method similar to the above. Thus

$$
\begin{align*}
R_{\mathrm{t}} & =f\left(s_{2}\right)  \tag{15}\\
s_{2} & =f\left(i_{2}\right)
\end{align*}
$$

and, at constant $t$

$$
\begin{equation*}
i_{2}=f\left(i_{2}{ }^{0}\right) \tag{17}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i_{2}{ }^{0}}=\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}}\left(-\frac{\mathrm{d} s_{2}}{\mathrm{~d} i_{2}}\right) \frac{\mathrm{d} i_{2}}{\mathrm{~d} i_{2}{ }^{0}} \tag{18}
\end{equation*}
$$

As before, the negative term is the condition for competition between $\mathrm{S}_{2}$ and $\mathrm{I}_{2}$ for $\mathrm{F}_{2}$.
'The terms in eq. (18) are obtained from definitions (c), (c) and (d), and (h) respectively. The result, for constant $t$, is

$$
\begin{equation*}
\frac{\mathrm{d} R_{t}}{\mathrm{~d} i_{2}{ }^{n}}=k_{2}\left(-\frac{k_{2} s_{2}}{k_{y y} i_{2}}\right) e^{-k_{y} t} \tag{19}
\end{equation*}
$$

Substituting definition (h) for $i_{2}$ and definition (e) for kess, cancelling identical terms and rearranging gives

$$
\begin{equation*}
\mathrm{d} R_{\mathrm{t}}=-\frac{k_{\mathrm{a}}}{k_{\mathrm{y}}} \times \frac{F_{\mathrm{t}}}{i_{2}{ }^{4}} \mathrm{~d} i_{2}{ }^{0} \tag{20}
\end{equation*}
$$

Integration of eq. (20) gives

$$
\begin{equation*}
-\ln R_{\mathrm{t}}=\frac{\hat{k}_{2}}{\vec{k}_{\mathrm{y}}} \ln i_{2}^{\prime \prime}+\ln C \tag{21}
\end{equation*}
$$

or, by definition (f)

$$
\begin{equation*}
\ln E_{\mathrm{t}}=\frac{k_{2}}{k_{y}} \ln i_{2}{ }^{0}+\ln C \tag{22}
\end{equation*}
$$

Derivation for First-order Model Inhibited by $I_{1}$ and $I_{2}$ Combined.-With both inhibitors present

$$
\begin{equation*}
R_{\mathrm{t}}=f\left(i_{1}{ }^{0}, i_{z}{ }^{0}\right) \tag{23}
\end{equation*}
$$

so, by theorem A

$$
\begin{equation*}
\mathrm{d}{R_{\mathrm{t}}}=\left(\frac{\partial R_{\mathrm{t}}}{\partial i_{1}{ }^{0}}\right)_{i_{2}{ }^{0}} \mathrm{~d} i_{1}{ }^{0}+\binom{\partial R_{\mathrm{t}}}{\partial i_{2} 0^{0}}_{i 1^{0}} \mathrm{~d} i_{2}{ }^{0} \tag{24}
\end{equation*}
$$

But the partial differential coefficients on the right side of eq. (24) are given by eq. (12) and (20) so eq. (24) becomes

$$
\begin{equation*}
\mathrm{d} i_{\mathrm{t}}^{2}=-\frac{k_{2}}{k_{\mathrm{x}} i_{i 1^{0}}{ }^{0}} \mathrm{~d} i_{1}{ }^{\prime \prime}-\frac{k_{2}}{k_{\mathrm{y}}} \frac{R_{\mathrm{t}}}{i_{2}{ }^{0}} \mathrm{~d} i_{2}{ }^{0} \tag{25}
\end{equation*}
$$

Rearranging and integrating eq. (25) gives

$$
\begin{equation*}
-\ln R_{\mathrm{t}}=\frac{k_{2}}{k_{x}} \ln i_{1}{ }^{0}+\frac{k_{2}}{k_{y}} \ln i_{y^{0}}+\ln C \tag{26}
\end{equation*}
$$

or, by definition (f)

$$
\begin{equation*}
\ln E_{\mathrm{t}}=\frac{k_{2}}{k_{\mathbf{x}}} \ln i_{1}{ }^{0}+\frac{k_{2}}{k_{y}} \ln i_{2}{ }^{0}+\ln C \tag{1}
\end{equation*}
$$

The locus of ( $\mathrm{cq}_{\mathrm{p}}$. (27) is the desired theoretical doseeffect surface for the drug pair.

Although the addition required by eq. (24) would seem to imply additive effects for $I_{1}$ and $I_{2}$, the net result is multiplicative-and therefore synergistic-because of the presence of the logarithmic factors, $\mathrm{d} i_{1}{ }^{0} / i_{1}^{\prime \prime}$ $=\mathrm{d}\left(\ln i_{1}{ }^{0}\right)$ and $\mathrm{d} i_{2}{ }^{0} i_{2}{ }^{0}=\mathrm{d}\left(\ln i_{1}{ }^{0}\right)$, as seen in eq. (25). It is this feature that leads to eq. (27) and its associated close-effect surface as the first recorded indication of the obligatory nature of synergism. This point will be explored later in more detail.

Derivations for the Second-order Model.-The procedure (See Appendix) is analogous to that for the 1 st-order case except that $e_{1}$ and $e_{2}$ must be treated as variables and freer use of partial differentials must therefore be made in handling the appropriate definitions, (f), (i), (k)-(n).

The equations that result are, for single inhibition

$$
\begin{equation*}
\frac{d E_{\mathrm{t}}}{E_{1}}=\frac{k_{2}}{k_{\mathrm{x}}}\left(-\frac{e_{2}+s_{0}}{e_{1}}\right) \frac{\mathrm{d} i_{1}{ }^{0}}{i_{1}^{0}} \tag{28}
\end{equation*}
$$

and

$$
\frac{\mathrm{d} E_{\mathrm{t}}}{E_{\mathrm{t}}}=\frac{k_{2}}{k_{y}}\left(\frac{e_{2}+s_{2}}{e_{2}}\right) \frac{\mathrm{d} i_{2}{ }^{n}}{i_{\mathrm{y}}{ }^{0}}
$$

and, for double inhibition

$$
\begin{equation*}
\frac{\mathrm{d} E_{\mathrm{t}}}{E_{\mathrm{t}}}=\frac{k_{2}}{k_{\mathrm{x}}}\left(\frac{e_{2}+s_{2}}{c_{1}}\right) \frac{\mathrm{d} i_{1}{ }^{n}}{i_{1}{ }^{n}}+\frac{k_{2}}{k_{\mathrm{y}}}\left(\frac{e_{2}+s_{2}}{c_{2}}\right) \frac{\mathrm{d} i_{2}{ }^{n}}{i_{2}{ }^{0}} \tag{30}
\end{equation*}
$$

These equations cannot be integrated as they stand, but they are comparable in form to eq. (14), (22). and (27)
for the 1st-order cases. The validity of eq. (28), (29), and (30) relative to that of the corresponding 1st-order equations is seen by applying the 1 st-order condition, $e_{1} \sim e_{2} \ggg s_{2}$; this leads to $\left(e_{2}+s_{2}\right) / e_{1} \sim 1$ and $\left(e_{2}+\right.$ $\left.s_{2}\right) / e_{2} \sim 1$. Integration is now possible, with results identical with eq. (14), (22), and (27) for the 1st-order case.

All subsequent discussion will be simplified, but with no loss in generality, by minimizing the 2 nd-order case. This will emphasize the early, exponentially rising part of the composite dose-effect surface, Fig. 1, described


Fig. 1. - Part of the locus of the exponential form of eq. (27), developed for the 1st-order region in which $e_{1} \ggg\left(s_{1} \sim i_{1}{ }^{0}\right)$, $e_{2} \ggg\left(s_{2} \sim i_{2}{ }^{0}\right), k_{2}>k_{x}$ and $k_{2}>k_{y}$. The qualitative identity of all analytic properties of this surface to those of an experimental boloform surface ${ }^{8}$ is evidence for the validity of eq. (27) as a definition of synergism. The symmetry of the surface relative to the $i_{1}{ }^{0}=i_{2}{ }^{0}$ plane depends on the magnitude of $k_{x} / k_{y}$. Definition of the individual dose-effect curves ( $\mathrm{AA}^{\prime}$ and $\mathrm{BB}^{\prime}$ ) and the isobole intercepts ( $\mathrm{A}, \mathrm{B}, \mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ ) requires translation of eq. (27) and (34) to the origin shown here. This translation and the relevance of points A, a, B, b and coördinates $x$ and $y$ to an experimental isobole are discussed in connection with Fig. 3. The transition of an individual dose-effect curve, for example $\mathrm{BB}^{\prime}$, to the familiar sigmoid form at higher $i_{2}{ }^{0}$ values is explainable as a continuous transition to 2nd-order kinetics in the neighborhood of the inflection point (not shown) and to kinetics 0-order in inhibitor as the plateau (also not shown) is reached. In the plateau region, $E_{\mathrm{t}}$ is, in theory and in fact, independent of further increases in inhibitor concentrations. The notion of synergism is experimentally meaningless in the plateau region, so the inability of the model to account for it when $i_{1}{ }^{3} \ggg e_{1}$ and $i_{2}{ }^{0} \ggg e_{2}$ is expected. The $E_{\mathrm{t}}$-coördinate of the origin, $\left(E_{\mathrm{t}}\right)_{\mathrm{b} . \mathrm{a}}$, is given by eq. (43) and the individual dose-effect curves are defined by eq. (42) when $x=0$ or $y=0$.
by the exponential form of eq. (27). This emphasis is justified by the experimental need for working at inhibitor concentrations that produce sub-maximal effects in order to demonstrate synergism at all.
Synergism is, of course, demonstrable for inhibitor concentrations in the 2nd-order region of the doseeffect surface, described by eq. (30); no inflections or discontinuities are discernible, however, in the approach of ( $e_{2}+s_{2}$ )/ $e_{1}$ and ( $e_{2}+s_{2}$ )/ $e_{2}$ to unity, which reduces
eq. (30) to eq. (27), so conclusions as to the nature of synergism in the 2 nd-order region should be qualitatively the same as those to follow for the more manageable 1st-order region, depicted in Fig. 1. ${ }^{26 \mathrm{a}}$

Other points of qualitative equivalence of the 1stand 2nd-order cases will be emphasized as they appear. The fuller relevance of Fig. 1 to synergism will also appear later.

The steady-state assumption, $\mathrm{d} s_{2} / \mathrm{d} t=0$, has not been deliberately imposed. This assumption is most often made for the mathematical simplicity to which it leads, but it also has a very realistic basis when applied to successive enzymatic reactions. ${ }^{16}$ The results for the 1st-order model would be unchanged by this assumption since $s_{2}$ does not appear in the final equations. The 2 nd-order model is reduced to 1 st-order by assuming $s_{2}$ small relative to $e_{1}$ and $e_{2}$; this is equivalent, in its net effect upon $E_{t}$, to assuming $s_{2}$ constant, which is the steady-state condition.

The following discussion will be based upon results for the model inhibited at adjacent points

$$
\mathrm{S}_{1} \xrightarrow{\mathrm{I}_{1}} \mathrm{~S}_{2} \xrightarrow{\mathrm{I}_{2}} \mathrm{~S}_{3}
$$

but the more general nature ${ }^{18}$ of these results can be shown by assuming that the points of inhibition are not adjacent. If, for example

$$
\mathrm{S}_{1} \xrightarrow[\mathrm{I}_{1}]{\stackrel{k_{1}}{\rightarrow}} \mathrm{~S}_{2} \xrightarrow{k_{2}} \mathrm{~S}_{3} \xrightarrow[\mathrm{I}_{2}]{k_{3}} \mathrm{~S}_{4} \xrightarrow{k_{4}} \mathrm{~S}_{5}
$$

then by analogy with eq. (5)

$$
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i_{1}{ }^{0}}=\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{4}} \times \frac{\mathrm{d} s_{4}}{\mathrm{~d} s_{3}} \times \frac{\mathrm{d} s_{3}}{\mathrm{~d} s_{2}} \times \frac{\mathrm{d} s_{2}}{\mathrm{~d} s_{1}}\left(-\frac{\mathrm{d} s_{1}}{\mathrm{~d} i_{1}}\right) \frac{\mathrm{d} i_{1}}{\mathrm{~d} i_{1}{ }^{0}}
$$

or

$$
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i_{1}{ }^{0}}=\frac{k_{4}}{k_{4} s_{4}} \frac{k_{3} s_{3}}{k_{3}} \times \frac{k_{3} s_{3}}{k_{2} s_{2}} \times \frac{k_{2} s_{2}}{k_{1} s_{1}}\left(-\frac{k_{1} s_{1}}{k_{x} i_{1}}\right) e^{-k_{\mathrm{x}} t}
$$

This, after the operations of eq. (10), (11) and (12) gives, for inhibition by $\mathrm{I}_{1}$ alone

$$
\mathrm{d} R_{\mathrm{t}}=-\frac{k_{4}}{k_{\mathrm{x}}} \times \frac{R_{\mathrm{t}}}{i_{1}{ }^{0}} \mathrm{~d} i_{1}{ }^{0}
$$

a form identical with eq. (12). Results analogous to eq. (20) and (25) are also obtained for inhibition of the above sequence by $I_{2}$ and $I_{1}+I_{2}$, so the following discussion applies to an unbranched sequence of any length inhibited at any two different points.

## Discussion of Results

The dose-effect curve for a single inhibitor can often be linearized over an important part of its range by plotting on $\log -\log$ axes. This technique has given linear plots for effects as diverse as: urea denaturation of tobacco mosaic virus ${ }^{27}$; carbamate inhibition of luminescence of Photobacterium phosphoreum ${ }^{28}$; phenobarbital inhibition of respiration of rat brain slices ${ }^{29}$;

[^2]phenol disinfection of Staphylococcus pyogencs aureus ${ }^{34.31}$ : inhibition of horse serum cholinesterase by alkyl fluorophosphates ${ }^{32}$; malonate inhibition of the succinic dehydrogenase of Escherichia coli ${ }^{33}$; inhibition of embryonic heart beat by cyanide ${ }^{34}$; inhibition of yeast respiration by ethyl carbamate ${ }^{35}$ : azide inhibition of Cypridina luciferase. ${ }^{36}$ Many similar examples from the older literature are discussed by Clark. ${ }^{3 i}$

This practice, though empirical in origin, implies a relationship of the type

$$
\ln E_{\mathrm{t}}=\ln \ln i^{\prime \prime}+\ln C^{\prime}
$$

Substitution of $k_{2} k_{x}$ or $l_{2} / h_{y}$ for $m$ in this expression gives a result identical with eq. (14) or eq. (22). This identity satisfies the need, expressed by Hinshelwood. ${ }^{38}$ for a rational interpretation of the arbitrary coefficient. $m$. The validity of $\mathrm{e}_{\mathrm{f}}$. (14) and (22) is thus supported by the widespread, successful use of $\ln E_{\mathrm{t}} \mathrm{vs}$. $\ln i^{\prime \prime}$ plots. ${ }^{39}$ in which the coefficient $m$ can now be identified as the ratio of two rate constants: one, a characteristic of the enzyme system alone; the other, a characteristic of the inlibitor and the enzyme system. This point supports the carlier contention that synergism is as mueh a property of the enzyme system as it is a proporty of the inhibitors.

Equation (27) is the defining equation for syncrgism. The locus of $e_{1},(27)$, when converted to its exponcontial form, is identical in all essential respects to a boloform surface of the type found experimentally in cases of synergism. When $k_{2}>k_{x}$ and $k_{2}>k_{y}$ this surface has the general shape shown in Fig. 1, adapted from Loewe. ${ }^{7}$ When $k_{1}<k_{x}$ or $k_{2}<k_{y}$, the individual dose-effect curves. $\mathrm{Ad}^{\prime}$ or $\mathrm{BB}^{\prime}$, have curvatures opposite to those shown, but-as will appear later--the direction of curvature of isoboles $A B$ and $A^{\prime} B^{\prime}$. which is the critcrion for synergism, is the same for all combinations of the values of $k_{2}$, $k_{x}$ and $k_{x}$.

Experimental application of eq. (27) is most convernifnt when one of the concentration variables is held constant; the resulting graph is then a vertical profile of the boloform surface. A profile of this type is also linear in $\ln E, v s$. In $i^{\prime \prime}$ since the constancy of the fixed inhibitor concentration becomes a part of $\ln (C$. The use of eq. (27) in this manner is particularly convenient in the in vitro study of imhibited bacterial growth be(:anse of the simple proportionalities relating $E, n_{\mathrm{t}}$ and A., as expressed by definitions (i) and (f). ${ }^{60}$ For this purpose, eq. (27) becomes

$$
-\ln _{11} 1_{t}=\frac{k_{y}}{k_{x}} \ln i_{1}^{a}+\frac{k_{2}}{k_{y}} \ln i_{a}^{11}+\ln C
$$

in which the proportionality constants in definitions (j) and (f) are part of new intercept, In C. Applicability of eq. (27) is not, of course, limited to bacterial growth.

Equation (27) has a number of properties of interest

[^3]for their bearing on the concept of syncrgism. The multiplicative effect of joint inhibition is, in principle. most easily scen for the special case
$$
k_{u}=k_{x}=k_{y}
$$
for (er. (27) then takes the clearly multiplicative form
$$
E_{i}=\left(i_{1}^{d i} u_{n}^{\prime \prime}\right.
$$
lor the more general and more likely case, $h=\neq k$ is $\neq$ $k_{3}$, the function is more complicated, but in no case can it be additive for any combination of values of the quantities in eq. (2̄$)$.

The practical relevance of $\mathrm{e}_{1} .(2 \overline{7})$ to synergism is best seen, however, if it is given a geometric interpretation in terms of the combinations of $i_{1}{ }^{0}$ and $i_{2}$, that lead to a constant-effect elicl-point; the result is a horizontal profile of Fig. 1 with analytic properties identical with those of an experimental isobole. ${ }^{41}$ Thus, rearranging eq. (25) and substituting $\mathrm{d} E_{1} / E_{\mathrm{t}}$ for $-\mathrm{d} R_{1} / R_{\mathrm{t}}$ (definition f) gives
(31)

$$
\frac{\mathrm{d} E_{\mathrm{t}}}{E_{t}}=\frac{k_{2}}{k_{\mathrm{x}}} \times \frac{\mathrm{d} i_{1}{ }^{\prime \prime}}{i_{1}^{\prime \prime}}+\frac{k_{y}}{k_{y}} \times \frac{\mathrm{d} i_{z^{\prime \prime}}}{i_{y}^{\prime \prime}}
$$

Since every point on an isobole refers to constant effect. $\mathrm{d} E_{1}=0$ and eci. (31) becomes
(32)

$$
\frac{d i_{1}^{\prime \prime}}{d i_{e^{\prime}}^{\prime}}=-\frac{k_{x}}{k_{y}} \times \frac{i_{n}^{\prime \prime}}{i_{z}^{\prime \prime}}
$$

This is another rariant of the allometric equation referred to earlier. 3.26 Integration of eq . (3:2) gives a form linear in $\ln _{1} i_{1}^{\prime \prime}$ es. In $i_{2}{ }^{\prime \prime}$
(33)

$$
\ln i_{2}^{*}=-\frac{l_{x}}{k_{\mathrm{y}}} \ln i_{\mathrm{g}}^{\prime \prime}+\ln \theta
$$

or its equivalent

$$
(34)
$$

$$
i_{1}{ }^{\prime}=\epsilon /\left(i_{2}^{0}\right)^{v}
$$

where $w=k_{x} / k$. The 2 nd-order analog of e $e_{1}$. (32) can be obtained by setting $d E_{t}=0$ in eq. (30), leaving

$$
\begin{equation*}
\frac{\mathrm{d} i_{1}^{\prime \prime}}{\mathrm{d} i_{2}^{\prime}}=-\frac{k_{\mathrm{x}}}{k_{\mathrm{y}}} \times \frac{e_{1}}{e_{2}} \times \frac{i_{1}^{0}}{i_{2}^{0}} \tag{35}
\end{equation*}
$$

As expected, $e_{1}$ and $c_{2}$ appear explicitly, and the 1 storder result, eq. (34), is obtained when the lst-order condition, $c_{1} \sim c_{2} \ggg i_{1}{ }^{0} \sim i_{2}{ }^{9}$, is imposed on eq. (35).

Equation (34) describes a family of curves, some segments of which are indicated in Fig. 2. A given curve is completely determined for particular values of $C$ and $w$ and the result can be considered a theoretical isobole for synergism between a pair of drugs, $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$, that react in a 1st-order mamer (rate constants $l_{x}$ and $k_{y}$ ) with $\mathrm{E}_{1}$ and $E_{2}$ in competition with $S_{1}$ and $S_{2}$, respectively. Each such isobole is a constant-effect profile of the theoretical boloform surface for the drugs in question within the concentration range for which synergism is demonstrable. The relationship of a theoretical isobole to a generalized boloform surface and to the individual dose-effect curves is shown in Fig. 1.

Wach theoretical isobole of the type cxpressed by eff. (34) approaches the axes asymptotically with a sloper that is everywhere negative. At the point of intersection of the line $i_{1}{ }^{0}=i_{2}{ }^{0}$, with an isobole
(36) $\quad d i i^{\prime \prime} / d i_{2}{ }^{n}=$ slope $=-w$
but. in gencral
(3i) $-\cdots=\operatorname{sln}) \times\left(i 3^{*} / i_{1}{ }^{\prime \prime}\right)$

[^4]

Fig. 2.-Segments of the theoretical isobole, $i_{1}{ }^{0}=C /\left(i_{2}{ }^{0}\right)^{w}$, for various values of $C$ and $w$ : (a) same $C(\neq 1)$, different $w^{\prime}$; (b) same $C(=1)$, different $w$ 's; (c) different $C^{\prime} s$ s, same $w$; (d) different $C$ 's. different $w$ 's.
by rearrangement of eq. (32). The symmetry of a theoretical isobole relative to the line $i_{1}{ }^{0}=i_{2}{ }^{0}$ is thus determined by the magnitude of $w$; for the special case, $w=1$, the isobole is a rectangular hyperbola. ${ }^{41 \mathrm{a}}$

Differentiation ${ }^{42}$ of eq. (32) gives

$$
\begin{equation*}
\frac{\mathrm{d}^{2} i_{1}{ }^{0}}{\left.\left(\mathrm{~d} i_{2}\right)^{2}\right)^{2}}=\left(w^{2}+w\right) \frac{i_{1}{ }^{0}}{i_{2}{ }^{0}} \tag{38}
\end{equation*}
$$

For all meaningful values of $i_{1}{ }^{0}, i_{2}{ }^{0}$, and $w$ in eq.

$$
\begin{equation*}
\mathrm{d}^{2} i_{1}{ }^{0} /\left(\mathrm{d} i_{2}{ }^{0}\right)^{2}>0 \tag{38}
\end{equation*}
$$

so every isobole is concave as shown, as required for synergism and as found experimentally.

A similar test for the direction-of-curvature of the 2 nd-order isobole, obtained by partial differentiation of eq. (35), gives a result identical with eq. (39); this identity is another indication of the qualitative equivalence of the 1 st- and 2 nd-order treatments.

The ratio, $w$, can be found from eq. (37) by visually fitting a tangent, $\mathrm{d} i_{1}{ }^{0} / \mathrm{d} i_{2}{ }^{0}$, to any point, $\left(i_{1}{ }^{0}, i_{2}{ }^{0}\right)$, on an isobole. This is more easily done, however, from a linear plot of $\ln i_{1}{ }^{0} v s . \ln i_{2}{ }^{0}$, from which $(-w)=$ slope directly, as required by eq. (33). $C$, in a logarithmic plot of ea. (33), is the extrapolated value of $i_{1}{ }^{0}$ for $i_{2}{ }^{0}=1$.

The asymptotic approach of each end of a theoretical isobole, eq. (34), to the axes implies that, contrary to experience, an infinite concentration of either drug alone would be required to produce the standard response; this feature, though inconvenient, is in itself only a formal detriment to the theory, ${ }^{43}$ for the same limitation is inherent in the kinetics analysis of any 1st-order reaction. Thus, for

$$
\mathrm{A} \xrightarrow{k} \mathrm{~B}
$$

the rate equation. $-\mathrm{d} A / \mathrm{d} t=k A$, is indeterminate in $t$ for $A=0$, but first-order reactions do, in practice, go to completion in finite time. The indeterminate forms of
(41a) R. A. Edgren, Ann. N.Y. Acad. Sci., 83, 170 (1959), has referred to the hyperbolic nature of experimentally established isoboles.
(42) By logarithmic differentiation as described by G. J. Kynch, ref. 24, p.
eq. (33) and (34) for $i_{1}{ }^{0}=0$ or $i_{2}{ }^{0}=0$ thus result from the assumption of a 1 st-order mechanism.

The 2nd-order result, eq. (35), would presumably also lead to an indeterminate form, but this cannot be established formally since eq. (35) cannot be integrated under 2nd-order conditions. The 1st-order theoretical isobole, eq. (34), can be given meaningful intercepts, however, by translation to a new coördinate system with a new origin at $(b, a)$. This is a valid, indeed, a realistic procedure since drugs must often exceed certain threshold concentrations ( $b$ or $a$ ) before any effect is observed. ${ }^{38,43}$ Letting $a$ and $b$ represent the threshold concentrations for $I_{1}$ and $I_{2}$, respectively, eq. (33) can be translated to the new coördinate system

$$
\begin{aligned}
& i_{1}{ }^{0}=x+a \\
& i_{2}{ }^{0}=y+b
\end{aligned}
$$

where $x$ and $y$ are the concentrations of $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ in excess of threshold concentrations, $a$ and $b . \quad b$ and $a$ are both constants, so the new origin is ( $b, a$ ) and eq. (33) becomes

$$
\text { (40) } \quad \ln (x+a)=-w \ln (y+b)+\ln C
$$

Intercept, $\ln C$, is now the value of $\ln (x+a)$ for $(y+$ b) $=1$.

The result of this translation of coördinates is, in isobole form

$$
\left(41 ; \quad(x+a)=C /(y+b)^{w}\right.
$$

with a general shape shown in Fig. 3. The new isobole,


Fig. 3.-Graph of the function $(x+a)=C /(y+b)^{w}$ relative to an origin at $(b, a)$; a theoretical isobole in translated coördinates.
now plotted on an $x$ vs. $y$ scale, is of course identical with the previous one, but relative to the new origin $(b, a)$, and has finite intercepts on the $x$ and $y$ axes. $C$ and $(-w)$ are best determined from eq. (40) by a linear plot of $\ln (a+x) v s . \ln (b+y)$.

The intercepts, A and B, in Fig. 3 are now finite, for if, in eq. (41), $y=0$, then $x=A=\left(C / b^{w}\right)-a$, and if $x=0$, then

$$
y=B=(C / a)^{k_{y}} / k_{x}-b
$$

Intercept $A$ is the concentration of drug $I_{1}$ in excess of its minimum effective concentration (a) that, when act-
ing in the presense of a threshold concentration (b) of $I_{2}$, causes the standard response. The meaning of intercept B is clear by analogy.

Note that Fig. 1 is plotted relative to the same translated coördinate system, and that the $E_{t}$-coördinate of the origin. $\left(E_{t}\right)_{\text {, }}$, , is therefore not zero; it must be found by translation of eq. (27) and casting the result. into exponential form, giving

$$
\begin{equation*}
E_{\mathrm{t}}=C(a+x) k s / k_{x}(b+y) k_{2 / 2} / k_{y} \tag{12}
\end{equation*}
$$

whence, by setting $x=0$ and $y=0$

$$
\begin{equation*}
\left(E_{1}\right)_{b, a}=C a^{k_{z} / k_{x}} b_{k_{2} / k_{y}} \tag{43}
\end{equation*}
$$

The individual dose-effect curves ( $\mathrm{BB}^{\prime}$ and $\mathrm{AA}^{\prime}$ ) in lig. 1 are defined by eq. (42) when $x=0$ or $y=0$.

In theory, a threshold-effect isokole should connect points $b$ and $a$ in the $E_{t}=0$ plane of a boloform surface.「his predicts the existence of synergism when $i_{1}{ }^{0}=g a$ and $i_{2}{ }^{0}=h b, g$ and $h$ being fractions such that $g+h<$ 1. 'This isobole is not seen, however, in Fig. 1 since the $L_{1}^{\prime}=0$ plane is not shown there.

Thic cross-hatched area between the additivity and synergism isoboles in Fig. 3 has been defined as the "amount" of synergism. ${ }^{44}$ 'This quantity, $\Sigma$, can be determined directly from the graph by mechanical integration or by integration of eq. (41). Letting 0 represent the origin, then

$$
\text { Area } A O B=(A B) / 2
$$

and

$$
\begin{aligned}
\text { Area } \mathrm{AOCB} & =C \int_{0}^{b}(y+b)^{-\mathrm{x}} \mathrm{~d} y-a \int_{0}^{B} \mathrm{~d} y \\
& \Sigma \equiv \mathrm{AOB}-\mathrm{AOCB}
\end{aligned}
$$

so

$$
\Sigma=(\mathrm{AB}) / 2-\left(C \int_{0}^{B}(y+b)^{-t} \mathrm{~d} y-a \int_{0}^{B} \mathrm{~d} y\right)
$$

When $w \neq 1$, integration gives

$$
\Sigma=(\mathrm{AB}) i^{2}-\frac{C}{(1-w)(B+b)^{w-1)}}+\frac{C}{(1-u)^{(w-1)}}+a B
$$

For the special case, $w=1$, the integration gives

$$
\Sigma=(\mathrm{AB}) / 2-C \ln (B+b)+C \ln b+a B
$$

$\Sigma$ is thus determined entirely by the graphical constants for a given system.

Acknowledgments.-I hare benefited from many discussions of this problem with many of my associates; mong them, I ore particular thanks to Mr. Leonard Doub who first aroused my interest in the subject and offered many valuable criticisms of the manuscript during its preparation. I am also grateful to the reforees of this meper for citing three references ${ }^{46,47 \mathrm{an}, 47 \mathrm{~b}}$ which contribite to the record and have, therefore, been added. These references, though relevant to the present work, do not in any way anticipate its methods or conclusions.
(14) C: B. Elion, S, Binger and (©. II. litehines, J. Biol. Chem., 208, 477 (1954).
 (197t).
(46) J. 11. (addunt. Itharmacol. Revs., 9, 211 (1957).
(47) (ia) S. F. do longh itı, "Quantitative Methods in Pharmacology," 15. de dongat, ed. North-Halland Pritl. Co. Aristerdam. 1961. np. 318-327; (1.) 1', S. lewlett and R. L. Mlatekett, ihid., 1m. 328-339.

## Appendix

Derivation of Equation (28), -The procedure is analogons t., that followed for the 1st-order model except that $e_{1}$ and $e_{2}$ must be treated as variables and freer use of partial differentiation must be made in handling the relevant definitions, (f). (i), ( k$)-(\mathrm{r})$.

From these definitions

$$
(12)
$$

$$
(A: i)
$$

$$
\begin{align*}
R_{\mathrm{t}} & =f\left(\epsilon_{2}, s_{2}\right)  \tag{t1}\\
s_{2} & =f\left(s_{1}\right) \\
\varepsilon_{i} & =f\left(i_{1}\right)
\end{align*}
$$

and
(.14)
$i_{1}=f\left(i_{1}{ }^{\prime \prime}\right)$
So, by theorem B

$$
\begin{equation*}
\frac{\mathrm{d} I_{\mathrm{t}}{ }_{\mathrm{t}}^{\mathrm{d} i_{1}{ }^{\prime \prime}}=\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}} \times \frac{\mathrm{d} s_{v}}{\mathrm{~d} s_{1}}\left(-\frac{\mathrm{d} s_{1}}{\mathrm{~d} i_{1}}\right) \frac{\mathrm{d} i_{1}}{\mathrm{~d} \hat{i}_{1}{ }^{0}}}{} \tag{j}
\end{equation*}
$$

In the strictest sense, eq. (A2)-(A4) and the operators in eq. (A5) should be written as partial dependencies; it will be seen later. however, that certain convenient cancellation properties require that only $R_{1}$ be treated explicitly as a function of two variables, as specified in e(l. (A1.)

Applying theorem A to eq. (A1) gives
(A6)

$$
\mathrm{d} R_{\mathrm{t}}=\left(\frac{\partial R_{\mathrm{t}}}{\partial s_{\mathrm{t}}}\right)_{e_{2}} \mathrm{~d} s_{2}+\left(\frac{\partial R_{\mathrm{t}}}{\partial e_{2}}\right)_{s z} \mathrm{~d} \epsilon_{2}
$$

and these operations, applied to definition ( $k$ ), give

$$
\begin{equation*}
\mathrm{d} R_{\mathrm{t}}=\left(k_{2} e_{2}\right) \mathrm{d} s_{2}+\left(k_{2} s_{2}\right) \mathrm{d} e_{2} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{d} F_{\mathrm{t}}}{\mathrm{~d} s_{2}}=k_{2} e_{2}+\left(k_{2} s_{2}\right) \frac{\mathrm{d} e_{2}}{\mathrm{~d} s_{2}} \tag{AS}
\end{equation*}
$$

But de $e_{2} / \mathrm{ds}_{\mathrm{s}_{2}}=1$, so eq. (As) becomes

$$
\begin{equation*}
\frac{1 R_{t}}{d s_{2}}=l_{22} e_{2}+k_{2} s_{2} \tag{A9}
\end{equation*}
$$

1)efinition ( $k$ ) divided by definition (1) is

$$
\begin{equation*}
\frac{\mathrm{d} s_{z}}{\mathrm{~d} s_{1}}=\frac{k_{2} e_{0} \cdot s_{2}}{k_{1} \varepsilon_{1} s_{1}} \tag{A10}
\end{equation*}
$$

and definition (I) divided by definition (m) gives

$$
\begin{equation*}
-\frac{\mathrm{d} s_{1}}{\mathrm{~d} i_{1}}=-\frac{k_{1} e_{1}, s_{1}}{k_{\mathrm{x}} e_{1} i_{1}}=-\frac{k_{2} s_{1}}{k_{\mathrm{x}} i_{1}} \tag{A11}
\end{equation*}
$$

Integration of definition ( $m$ ) gives
(A12)

$$
\ln i_{1}=-k_{\mathrm{x}} \int c_{1} \mathrm{~d} t+\ln i_{1}{ }^{0}
$$

or
(A13)

$$
i_{1}=i_{1}{ }^{0_{2}}-k_{x} \int c_{11}{ }^{H} t
$$

and partial differentiation of erf. (A13) gives

$$
\begin{equation*}
\frac{\mathrm{d} i_{i}}{\mathrm{~d} i_{1}{ }^{\prime \prime}}=c^{-}-k_{\cdot} \cdot f \cdot \mathrm{~d} t \tag{A14}
\end{equation*}
$$

Equations (A9), © 110 , A11) and (A14) are the terms in eq. (A5), so eq. (A5) becomes, after these substitutions

Suhstituting definition ( $k$ ) for ( $\mathrm{k}_{2} \mathrm{e}_{2} s_{2}$ ), eq. (A13) for $i_{1}$, c:uncelling identical terms, factoring, and rearranging gives

$$
\begin{equation*}
-\frac{d i_{\mathrm{t}}}{h_{\mathrm{t}}}=\frac{k_{2}}{k_{\mathrm{x}}}\left(\frac{e_{2}+s_{2}}{e_{1}}\right) \frac{\mathrm{d} i_{1}{ }^{0}}{i_{1}{ }^{0}} \tag{A16}
\end{equation*}
$$

Substitution of definition (fil in erl. (A16) gives

$$
\begin{equation*}
\left.\frac{\mathrm{d} E_{\mathrm{t}}}{E_{\mathrm{L}}}=\frac{k_{\mathrm{s}}}{k_{\mathrm{s}}}\left(\dot{c}_{2}+s_{2}\right) \frac{\mathrm{d} i_{1}{ }^{n}}{i_{1}^{1}}\right) \frac{i_{1}{ }^{0}}{} \tag{28}
\end{equation*}
$$

Derivation of Equation (29).-As in the 1st-order case for inhibition by $\mathrm{I}_{2}$ alone
(A17)

$$
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i_{2}{ }^{0}}=\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}}\left(-\frac{\mathrm{d} s_{2}}{\mathrm{~d} i_{2}}\right) \frac{\mathrm{d} i_{2}}{\mathrm{~d} i_{2}{ }_{2}}
$$

But
(A18)

$$
R_{\mathbf{t}}=f\left(s_{2}, e_{2}\right)
$$

so, by theorem A

$$
\begin{equation*}
\mathrm{d} R_{\mathrm{t}}=\left(\frac{\partial R_{\mathrm{t}}}{\partial s_{2}}\right)_{e_{2}} \mathrm{~d} s_{2}+\left(\frac{\partial R_{\mathrm{t}}}{\partial e_{2}}\right)_{s_{2}} \mathrm{~d} e_{2} \tag{A19}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}}=\left(\frac{\partial R_{\mathrm{t}}}{\partial s_{2}}\right)_{e_{2}}+\left(\frac{\partial R_{\mathrm{t}}}{\partial e_{2}}\right)_{s_{2}} \frac{\mathrm{~d} e_{2}}{\mathrm{~d} s_{2}} \tag{A20}
\end{equation*}
$$

The dependence of $R_{\mathrm{t}}$ on $i_{2}$ is omitted in eq. (A18)-(A20) since it has already been acknowledged in the first two terms of the righthand side of eq. (A17).

Since $\mathrm{d} e_{2} / \mathrm{d}_{2}=1$, eq. (A20) may be simplified, giving
(A21)

$$
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}}=\left(\frac{\partial R_{\mathrm{t}}}{\partial s_{2}}\right)_{e z}+\left(\frac{\partial R_{\mathrm{t}}}{\partial e_{2}}\right)_{s_{2}}
$$

Applied to definition (k), eq. (A21) becomes
(A22)

$$
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} s_{2}}=k_{2} e_{2}+k_{2} s_{2}
$$

Definition ( $k$ ) divided by definition ( $n$ ) gives
(A23)

$$
-\frac{\mathrm{d} s_{2}}{\mathrm{~d} i_{2}}=-\frac{k_{2} e_{2} s_{2}}{k_{y} e_{2} i_{2}}
$$

Integration of definition ( $\mathbf{n}$ ) gives
(A24)

$$
\ln i_{2}=-k_{y} \int e_{2} \mathrm{~d} t+\ln i_{2}{ }^{0}
$$

or
(A25)

$$
i_{2}=i_{2}{ }^{0} e^{-k_{y}} \delta \epsilon_{2} \mathrm{~d} t
$$

and partial differentiation of eq. (A25) gives

$$
\begin{equation*}
\frac{\mathrm{d} i_{2}}{\mathrm{~d} i_{2}{ }^{0}}=e^{-k_{y} \int_{e_{2} \mathrm{~d}}} \tag{A26}
\end{equation*}
$$

Substitution of eq. (A22), (A23) and (A26) in eq. (A17) gives
(A27)

$$
\frac{\mathrm{d} R_{\mathrm{t}}}{\mathrm{~d} i_{2}^{0}}=\left(k_{2} e_{2}+k_{2} s_{2}\right)\left(-\frac{k_{2} e_{2} s_{2}}{k_{y} e_{2} i_{2}}\right) \rho-k_{y} \delta e_{2} \mathrm{~d} t
$$

Substituting definition (k) for $k_{2} \rho_{2} s_{2}$ and eq. (A25) for $i_{2}$, cancelling identical terms, factoring and rearranging gives

$$
\begin{equation*}
-\frac{\mathrm{d} R_{\mathrm{t}}}{I_{\mathrm{t}}}=\frac{l_{2}}{L_{3}}\left(e_{2}+s_{2}\right) \frac{\mathrm{d} i_{2}^{0}}{i_{2_{2}}{ }^{0}} \tag{A28}
\end{equation*}
$$

Substitution of definiti,n (f) in eq. (A:8) gives

$$
\begin{equation*}
\frac{\mathrm{d} E_{\mathrm{t}}}{E_{\mathrm{t}}}=\frac{k_{2}}{l_{3}}\binom{e_{2}+s_{2}}{e_{2}} \frac{i_{2} i_{2}}{i_{2}{ }^{11}} \tag{29}
\end{equation*}
$$

Derivation of Equation ( $30,-$ Fy the reasoning given in the 1st-order case, eq. (28) and (29) may be combined directly t. give eq. (30).

# Monoamine Oxidase Inhibitors. IV. Some Dialkylaminophenylalkylhydrazines and Related Compounds 

Jacob Finkelstein, John A. Romano, Elliot Chiang, Anij Johy Lee<br>Research Laboratories, Hoffmann-La Roche, Inc., Nutley, N.J.

Received October 3, 1962


#### Abstract

Two sequences of chemical reactions leading to several new basically substituted phenylalkylhydrazines are described. The compounds were less active and/or more toxic than the unsubstituted parent compound in limited animal tests.


Certain aralkylhydrazines and selected acyl derivatives of them are potent, long-acting monoamine oxidase inhibitors. ${ }^{1}$ Substitution of the phenyl ring with amino or dialkylamino residues converted the length of activity from periods of the order of 25 days to less than 1 day. It was noted ${ }^{2}$ that with increasing length of the alkylene bridge, compounds of intermediate length of activity ( $4-5$ days) were obtained. This paper describes the preparation of these latter materials.
(4-Dimethylamino- $\alpha$-methylphenethyl) hydrazine ( $V$ ) was synthesized as follows
treating 4-nitrophenylacetyl chloride with diethyl ethoxymagnesium malonate. ${ }^{3}$ It was reduced readily in the presence of formalin to produce 1-(4-dimethyl-aminophenyl)-2-propanone (II) in $91 \%$ yield as a yellow distillable oil, which was treated with acetyl hydrazine to form the corresponding acetylhydrazone (III) which was reduced to IV in acetic acid by $\mathrm{H}_{2} / \mathrm{PtO}_{2}$, stopping the absorption of one equivalent of hydrogen. If the reduction was permitted to continue, the cyclohexyl compound VI was formed which, on deacetylation, gave VII. Deacetylation of IV gave V.


1-(4-Nitrophenyl)-2-propanone (I) was prepared by
(1) T. S. Gardner. E. Wenis, and J. Lee. J. Med. Pharm. Chem., 2, 133 (1960).
(2) T. S. Gardner, E. Wenis, and J. Lee, ibid., 3. 241 (1961),

The synthesis of the higher homolog, 1-(4-dimethyl-aminophenyl)-3-hydrazinobutane and related products, is shown in the scheme at the top of the next page.
(3) C. G. Overberger and H. Biletch. J. Am. Chem. Soc., 73. 4881 (19ä1).


[^0]:    (17) summarized in IE . (:. Bray and K. Whito, "kinetiss and Fhormo dynanics in Biochenistry," Academic I'ress lne.. New York, N. Y.. 14.jT. Chap. 7.
    (18) J. Z. Hearon, Bull. Math. Biophys., 11, 29, 83 (1949): 15, 1:1 (1953), las generalized the Michaelis-Mentell theory to include a connected sedmence of enzymatic reactions, but has not shown the consequences of multiple inhibition. See also J. Z. Hearon, Physiol. Rev., 32, 499 (1952), for a general discussion.
    (19) See, for example, J. W. Mellor, "Higher Mathennatics for Students ol Chemistry and Physics," Dover Publications, New York, N. Y., 1946. 111. $443-440 ;$ A. A. Frost and R. ©. Pearson, "Kinetics and Mechanisms: a Stıdy of Homogeneous Chemical Reactions." Joln Wiley and Sons, [nc., New York. N. Y., 1953. Chapt. 8.
    (20) But necessarily so, for only the simplest mechanisms are amenahle (o eommlete kinetics analysis. In fact, a simple inalytical solution for thos transient-state kineties of the Michaelis-DEaten mechanisn is not mossikle. B. (Hance, J. Biol. Chem., 151, 553 (19.3), obtained particular solutions hy use of a lifferential analyzer, These were confirnied by C.-C. Yang, Arch. Biochem. Biophys., 51, 419 (1953), using the leversion method. G. B. Kis tiakowsky and P. C. Mangeldorf, Jr., J. Am Chem. Soc., 78. 2964 (1956). achieved a close approximation by a power series expansion of the Michaelis Mentell rate equation.
    (21) A rate equation for the additive effocts of two inhilitars artine on the sume mizynatie step has been dedmed hy il, II. Johnsori, Il. lyring, und M. J. Polissar, "The Kinetic Basis of Molecular Binlogy," Jolnn Wiles and Sons, Now York, N. Y., 19:44, np. 469-470,
    

[^1]:     Kow Yurk N. Y., 1941. 1. 330.
     Now York, N. Y. 1003, 1, 14.

[^2]:    (26a) A referee has correctly observed that competition would be relatively inefficient in the 1st-order case; this is equivalent, of course, to recognizing that a small amount of drug has a small effect-a larger amount. a larger effect. etc., until the plateau of the dose-effect curve is reached. The continuous collapse of the 2 nd - to the 1 st-order equations as 1 st-order conditions are approached shows. however, that the condition for competition is apulicable in principle over the entire concentration range, however small the extent to which competition might actually prevail in the extreme lstorder case.
    (27) M. A. Lauffer. J. Am. Chem. Soc.. 65. 1793 (1943).
    (28) F. H. Johnson, E. A. Flagler, R. Simpson and K. McGeer, J. Cell. Comp. Physiol., 37, 1 (1951).
    (29) M. Jowett. J. Physiol., 92. 322 (1938).

[^3]:    (:0) 1L. (Lick, J. IHyg. 8, o? (1908).
    (31) II. E. Watson, ibid., 8, 536 (1908)
    (32) I. F. Mackworth and Li. C. Webll, Biwhem. J., 42, 91 (1948).
    (33) I. II. Quastcl and W. R. Wimldridee. ibid., 22. 689 (1928)
    (34) K. (C. Fisher tull R. Önell, J. Ceil. Comp. Physiol., 16, 1 (19:0),
    (3.7) K. C. Fisher and I. R. Stearn, ibid., 19. 109 (1942).
    (36) A. N. Chase ibid. 19, 173 (1942).
    (37) A. J. Clark, "General Pharina"they." in "Heffer's Itandbuelh der expecimentrien Pharmakologe," W. Hesther and J. Schüller, eds., Verlag wh dulins Springer, Berlin, 193t. Bil IV.
    is8) ( $\therefore$ N. Hinshelwoml, ref. 16, 111. 101-102.
    W0) Sere also the acisorption finction of A. J. Clark, ref. 37, p, 38.
    (r) Sce alsa M. Kurokawa, M. Hatano, N. Kasliwagi, T. saito, S.
    

[^4]:    41) L. G. Gombin. sea ref. a
